Quy tắc xét dấu bảng biến thiên lớp 12

      201

Khảo sát chiều biến thiên của hàm số $y=f\left( x \right)$ dựa vào bảng xét dấu ${y}"$.

Bạn đang xem: Quy tắc xét dấu bảng biến thiên lớp 12

Phương pháp giải bài tìm khoảng đồng biến ngịch biến của hàm số

Bước 1.Tìm tập xác định D của hàm số. Tính đạo hàm ${y}"={f}"\left( x \right)$.


Bước 2.Tìm các điểm tại đó ${f}"\left( x \right)=0$hoặc${f}"\left( x \right)$ không xác định.

Bước 3.Sắp xếp các điểm theo thứ tự tăng dần và lập bảng xét dấu của ${y}"$.

Dựa vào quy tắc xét dấu đã nêu để xét dấu cho ${y}"$.

Bước 4.Kết luận về các khoảng đồng biến và nghịch biến dựa vào bảng xét dấu của ${y}"$.

Bài tập tìm khoảng đồng biến nghịch biến có đáp án

Bài tập 1:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a) $y={{x}^{3}}-3{{x}^{2}}+2$b)$y={{x}^{4}}-2{{x}^{2}}$

Lời giải chi tiết

a) TXĐ: $D=\mathbb{R}$

Ta có: ${y}"=3{{x}^{2}}-6x\Leftrightarrow \left\{ \begin{array}{} x=0 \\{} x=2 \\ \end{array} \right.$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên các khoảng $\left( -\infty ;0 \right)$ và $\left( 2;+\infty\right)$, nghịch biến trên khoảng $\left( 0;2 \right)$.

b) TXĐ: $D=\mathbb{R}$

Ta có: ${y}"=4{{x}^{3}}-4x\Leftrightarrow \left\{ \begin{array}{} x=0 \\{} x=\pm 1 \\ \end{array} \right.$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên các khoảng $\left( -1;0 \right)$ và $\left( 1;+\infty\right)$, nghịch biến trên khoảng $\left( -\infty ;-1 \right)$ và $\left( 0;1 \right)$

Bài tập 2:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a)$y=-{{x}^{3}}+3x-2$b) $y={{x}^{4}}-4{{x}^{3}}+2$

Lời giải chi tiết

a) TXĐ: $D=\mathbb{R}$

Ta có: ${y}"=-3{{x}^{2}}+3=0\Leftrightarrow \left\{ \begin{array}{} x=-1 \\{} x=1 \\ \end{array} \right.$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên các khoảng $\left( -1;1 \right)$ và nghịch biến trên khoảng $\left( -\infty ;-1 \right)$ và $\left( 1;+\infty\right)$.

b) TXĐ: $D=\mathbb{R}$

Ta có: ${y}"=4{{x}^{3}}-12{{x}^{2}}=4{{x}^{2}}\left( x-3 \right)$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên các khoảng $\left( 3;+\infty\right)$, nghịch biến trên khoảng $\left( -\infty ;3 \right)$.

Bài tập 3:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a)$y=\frac{x+3}{x-1}$.b) $y=\frac{3x+1}{x+1}$.

Lời giải chi tiết

a) TXĐ: $D=\mathbb{R}\backslash \left\{ 1 \right\}$

Ta có: ${y}"=\frac{-4}{{{\left( x-1 \right)}^{2}}}

*

Vậy hàm số nghịch biến trên khoảng $\left( -\infty ;1 \right)$ và $\left( 1;+\infty\right)$.

b) TXĐ: $D=\mathbb{R}\backslash \left\{ -1 \right\}$

Ta có: ${y}"=\frac{2}{{{\left( x+1 \right)}^{2}}}>0\text{ }\left( \forall x\in D \right)$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên các khoảng $\left( -\infty ;-1 \right)$ và $\left( -1;+\infty\right)$.

Bài tập 4:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a) $y=x+\frac{4}{x}$.b)$y=\frac{{{x}^{2}}-x+9}{x-1}$.

Lời giải chi tiết

a) TXĐ: $D=\mathbb{R}\backslash \left\{ 0 \right\}$. Ta có: ${y}"=1-\frac{4}{{{x}^{2}}}=0\Leftrightarrow \left\{ \begin{array}{} x=2 \\{} x=-2 \\ \end{array} \right.$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên các khoảng $\left( -\infty ;-2 \right)$ và $\left( 2;+\infty\right)$, hàm số nghịch biến trên khoảng $\left( -2;0 \right)$ và $\left( 0;2 \right)$.

b) TXĐ: $D=\mathbb{R}\backslash \left\{ 1 \right\}$

Ta có: ${y}"=\frac{\left( 2x-1 \right)\left( x-1 \right)-\left( {{x}^{2}}-x+9 \right)}{{{\left( x-1 \right)}^{2}}}=\frac{{{x}^{2}}-2x-8}{{{\left( x-1 \right)}^{2}}}=0\text{ }\Leftrightarrow \left\{ \begin{array}{} x=-2 \\{} x=4 \\ \end{array} \right.$.

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên các khoảng $\left( -\infty ;-2 \right)$ và $\left( 4;+\infty\right)$, hàm số nghịch biến trên các khoảng $\left( -2;1 \right)$ và $\left( 1;4 \right)$.

Bài tập 5:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a)$y=\sqrt{16-{{x}^{2}}}$b)$y=\sqrt{6x-{{x}^{2}}}$

Lời giải chi tiết

a) TXĐ: $D=\left< -4;4 \right>$. Ta có: ${y}"=\frac{-2x}{2\sqrt{16-{{x}^{2}}}}=0\Leftrightarrow x=0$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên khoảng $\left( -4;0 \right)$ và hàm số nghịch biến trên khoảng $\left( 0;4 \right)$.

b) TXĐ: $D=\left< 0;6 \right>$

Ta có: ${y}"=\frac{6-2x}{2\sqrt{6x-{{x}^{2}}}}=0\text{ }\Leftrightarrow x=3$.

Bảng biến thiên (xét dấu ${y}"$):


*

Vậy hàm số đồng biến trên khoảng $\left( 0;3 \right)$, hàm số nghịch biến trên khoảng $\left( 3;6 \right)$.

Bài tập 6:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a)$y=\sqrt{{{x}^{2}}-4x}$b)$y=\sqrt{{{x}^{2}}-8x+12}$

Lời giải chi tiết

a) TXĐ: $D=\left( -\infty ;0 \right>\cup \left< 4;+\infty\right)$. Ta có: ${y}"=\frac{2x-4}{2\sqrt{{{x}^{2}}-4x}}=0\Leftrightarrow x=2$

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên khoảng $\left( 4;+\infty\right)$, hàm số nghịch biến trên khoảng $\left( -\infty ;0 \right)$.

b) TXĐ: $D=\left( -\infty ;2 \right>\cup \left< 6;+\infty\right)$

Ta có: ${y}"=\frac{2x-8}{2\sqrt{{{x}^{2}}-8x+12}}=0\text{ }\Leftrightarrow x=4$.

Bảng biến thiên (xét dấu ${y}"$):

*

Vậy hàm số đồng biến trên khoảng $\left( 6;+\infty\right)$, hàm số nghịch biến trên khoảng $\left( -\infty ;2 \right)$.

Bài tập 7:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a)$y=x+1-2\sqrt{{{x}^{2}}+3x+3}$b)$y=2x+1-\sqrt{2{{x}^{2}}-8}$

Lời giải chi tiết

a) TXĐ: $D=\mathbb{R}$

Ta có: ${y}"=1-\frac{2\left( 2x+3 \right)}{2\sqrt{{{x}^{2}}+2x+3}}=\frac{\sqrt{{{x}^{2}}+2x+3}-\left( 2x+3 \right)}{\sqrt{{{x}^{2}}+2x+3}}=0\Leftrightarrow \sqrt{{{x}^{2}}+2x+3}=2x+3$

$\Leftrightarrow \left\{ \begin{array}{} 2x+3\ge 0 \\{} {{x}^{2}}+2x+3=4{{x}^{2}}+12x+9 \\ \end{array} \right.\Leftrightarrow \left\{ \begin{array}{} 2x\ge -3 \\{} \left< \begin{array}{} x=-1 \\{} x=-2 \\ \end{array} \right. \\ \end{array} \right.\Leftrightarrow x=-1$

Bảng biến thiên (xét dấu

):

*

Vậy hàm số đồng biến trên khoảng $\left( -1;+\infty\right)$ và nghịch biến trên khoảng $\left( -\infty ;-1 \right)$.

b) TXĐ: $D=\left( -\infty ;-2 \right>\cup \left< 2;+\infty\right)$

Ta có: ${y}"=2-\frac{4x}{2\sqrt{2{{x}^{2}}-8}}=\frac{2\sqrt{2{{x}^{2}}-8}-2x}{\sqrt{2{{x}^{2}}-8}}=0\Leftrightarrow \sqrt{2{{x}^{2}}-8}=2x\Leftrightarrow \left\{ \begin{array}{} x\ge 0 \\{} 2{{x}^{2}}-8=4{{x}^{2}} \\ \end{array} \right.$ (vô nghiệm).

Bảng biến thiên (xét dấu

):

*

Vậy hàm số đồng biến trên các khoảng $\left( -\infty ;-2 \right)$ và $\left( 2;+\infty\right)$.

Bài tập 8:Tìm các khoảng đồng biến và nghịch biến của các hàm số sau

a) $y=f\left( x \right)$biết ${f}"\left( x \right)=x{{\left( x-1 \right)}^{2}}{{\left( x+3 \right)}^{3}},\text{ }\forall x\in \mathbb{R}$.

b)$y=g\left( x \right)$biết ${g}"\left( x \right)=\left( {{x}^{2}}-1 \right)\left( x-2 \right){{\left( x+3 \right)}^{2018}},\text{ }\forall x\in \mathbb{R}$.

Lời giải chi tiết

a) Bảng biến thiên (xét dấu ${y}"$):

*

Hàm số đồng biến trên các khoảng $\left( -\infty ;-3 \right)$ và $\left( 0;+\infty\right)$, hàm số nghịch biến trên khoảng $\left( -3;0 \right)$.

b) Ta có: ${g}"\left( x \right)=\left( {{x}^{2}}-1 \right)\left( x-2 \right){{\left( x+3 \right)}^{2018}}={{\left( x+3 \right)}^{2018}}\left( x+2 \right)\left( x+1 \right)\left( x-1 \right)$

Bảng biến thiên (xét dấu ${y}"$):

*

Hàm số đồng biến trên các khoảng $\left( -2;-1 \right)$ và $\left( 1;+\infty\right)$, hàm số nghịch biến trên khoảng$\left( -\infty ;-2 \right)$ và $\left( -1;1 \right)$.

Bài tập 9:Cho hàm số $y=f\left( x \right)$có bảng xét dấu đạo hàm sau:

*

Mệnh đề nào dưới đây đúng?

A.Hàm số đồng biến trên khoảng $\left( -2;0 \right)$.B.Hàm số đồng biến trên khoảng $\left( -\infty ;0 \right)$.

C.Hàm số nghịch biến trên khoảng $\left( 0;2 \right)$.D.Hàm số nghịch biến trên khoảng $\left( -\infty ;-2 \right)$.

Lời giải chi tiết

Hàm số nghịch biến trên các khoảng $\left( -2;0 \right)$; $\left( 0;2 \right)$.

Và đồng biến trên các khoảng $\left( -\infty ;-2 \right)$ và $\left( 2;+\infty\right)$.Chọn C.

Bài tập 10:Tìm tất cả các khoảng đồng biến của hàm số $y=\frac{-{{x}^{2}}+2x-1}{x+2}$.

A.$\left( -5;-2 \right)$ và $\left( -2;1 \right)$B.$\left( -5;-2 \right)$ và $\left( 1;+\infty\right)$

C.$\left( -\infty ;-2 \right)$ và $\left( -2;1 \right)$D.$\left( -\infty ;-2 \right)$ và $\left( 1;+\infty\right)$

Lời giải chi tiết

Ta có: ${y}"=\frac{\left( -2x+2 \right)\left( x+2 \right)-\left( -{{x}^{2}}+2x-1 \right)}{{{\left( x+2 \right)}^{2}}}=\frac{-{{x}^{2}}-4x+5}{{{\left( x+2 \right)}^{2}}}=0\Leftrightarrow \left\{ \begin{array}{} x=1 \\{} x=-5 \\ \end{array} \right.$.

Bảng biến thiên (xét dấu

):

*

Do đó, hàm số đồng biến trên các khoảng $\left( -5;-2 \right)$ và $\left( -2;1 \right)$.Chọn A.

Bài tập 11:Tìm tất cả các khoảng nghịch biến của hàm số $y=-{{x}^{3}}-3{{x}^{2}}+24x+1$.

A.$\left( -4;2 \right)$B.$\left( -4;0 \right)$ và $\left( 2;+\infty\right)$

C.$\left( -\infty ;-4 \right)$ và $\left( 0;2 \right)$D.$\left( -\infty ;-4 \right)$ và $\left( 2;+\infty\right)$

Lời giải chi tiết

Ta có: ${y}"=-3{{x}^{2}}-6x+24=0\Leftrightarrow \left\{ \begin{array}{} x=-4 \\{} x=2 \\ \end{array} \right.$.

Bảng biến thiên (xét dấu ${y}"$):

*

Do đó, hàm số nghịch biến trên các khoảng $\left( -\infty ;-4 \right)$ và $\left( 2;+\infty\right)$.Chọn D.

Bài tập 12:Hàm số $y=\sqrt{{{x}^{2}}-2x}$

A.

Xem thêm: Dàn Sao “ Sống Không Dũng Cảm Lãng Phí Thanh Xuân ”, Sống Không Dũng Cảm Uổng Phí Thanh Xuân

Đồng biến trên $\left( 2;+\infty\right)$ và nghịch biến trên $\left( -\infty ;0 \right)$.

B.Đồng biến trên $\left( -\infty ;0 \right)$ và nghịch biến trên $\left( 2;+\infty\right)$.

C.Đồng biến trên $\left( 1;+\infty\right)$ và nghịch biến trên $\left( -\infty ;1 \right)$.

D.Đồng biến trên $\left( 1;2 \right)$ và nghịch biến trên $\left( 0;1 \right)$.

Lời giải chi tiết

TXĐ: $D=\left( -\infty ;0 \right>\cup \left< 2;+\infty\right)$. Ta có: ${y}"=\frac{2x-2}{2\sqrt{{{x}^{2}}-2x}}=0\Leftrightarrow x=2$

Bảng biến thiên (xét dấu ${y}"$):

*

Do vậy hàm số đồng biến trên $\left( 2;+\infty\right)$ và nghịch biến trên $\left( -\infty ;0 \right)$.Chọn A.

Bài tập 13:Hàm số $y=x\sqrt{1-{{x}^{2}}}$

A.Đồng biến trên các khoảng $\left( -1;\frac{\sqrt{2}}{2} \right)$ và $\left( \frac{\sqrt{2}}{2};1 \right)$ và nghịch biến trên $\left( \frac{-\sqrt{2}}{2};\frac{\sqrt{2}}{2} \right)$.

B.Đồng biến trên $\left( \frac{-\sqrt{2}}{2};\frac{\sqrt{2}}{2} \right)$ và nghịch biến trên các khoảng $\left( -1;\frac{\sqrt{2}}{2} \right)$ và $\left( \frac{\sqrt{2}}{2};1 \right)$.

C.Đồng biến trên $\left( \frac{-\sqrt{2}}{2};\frac{\sqrt{2}}{2} \right)$ và nghịch biến trên các khoảng $\left( -\infty ;-\frac{\sqrt{2}}{2} \right)$ và $\left( \frac{\sqrt{2}}{2};+\infty\right)$.

D.Đồng biến trên $\left( \frac{-\sqrt{2}}{2};\frac{\sqrt{2}}{2} \right)$ và nghịch biến trên các khoảng $\left( -\infty ;-1 \right)$ và $\left( 1;+\infty\right)$.

Lời giải chi tiết

TXĐ: $D=\left< -1;1 \right>$.

Ta có: ${y}"=\sqrt{1-{{x}^{2}}}-\frac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}=\frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}$.

Lập bảng xét dấu ${y}"$:

*

Do đó hàm số đồng biến trên $\left( \frac{-\sqrt{2}}{2};\frac{\sqrt{2}}{2} \right)$ và nghịch biến trên các khoảng $\left( -1;\frac{\sqrt{2}}{2} \right)$ và $\left( \frac{\sqrt{2}}{2};1 \right)$.

Chọn B.

Bài tập 14:Hàm số $y=\frac{x-2}{{{x}^{2}}+x+1}$đồng biến trên:

A.$\mathbb{R}$.B.$\left( -\infty ;2-\sqrt{7} \right)$ và $\left( 2+\sqrt{7};+\infty\right)$

C.$\left( 2-\sqrt{7};2+\sqrt{7} \right)$D.Hàm số đã cho luôn nghịch biến trên $\mathbb{R}$.

Lời giải chi tiết

TXĐ: $D=\mathbb{R}$.

Ta có: ${y}"=\frac{-{{x}^{2}}+4x+3}{{{\left( {{x}^{2}}+x+1 \right)}^{2}}}>0\Leftrightarrow {{x}^{2}}-4x-3Bài tập 15:Cho hàm số $y=\frac{2x-1}{{{\left( x-1 \right)}^{2}}}$. Hàm số đã cho:

A.Đồng biến trên các khoảng $\left( -\infty ;0 \right)$ và $\left( 1;+\infty\right)$ và nghịch biến trên khoảng $\left( 0;1 \right)$.

B.Đồng biến trên khoảng$\left( 0;1 \right)$ và nghịch biến trên các khoảng $\left( -\infty ;0 \right)$ và $\left( 1;+\infty\right)$.

C.Đồng biến trên khoảng$\left( -\infty ;0 \right)$ và nghịch biến trên khoảng $\left( 1;+\infty\right)$.

D.Đồng biến trên khoảng$\left( 1;+\infty\right)$ và nghịch biến trên khoảng $\left( -\infty ;0 \right)$.

Lời giải chi tiết

TXĐ: $D=\mathbb{R}\backslash \left\{ 1 \right\}$.

Ta có: ${y}"=\frac{2{{\left( x-1 \right)}^{2}}-2\left( x-1 \right)\left( 2x-1 \right)}{{{\left( x-1 \right)}^{4}}}=\frac{2\left( x-1 \right)-2\left( 2x-1 \right)}{{{\left( x-1 \right)}^{3}}}=\frac{-2x}{{{\left( x-1 \right)}^{3}}}$.

Lập bảng xét dấu của${y}"$:

*

Do vậy hàm số đồng biến trên khoảng $\left( 0;1 \right)$ và nghịch biến trên các khoảng $\left( -\infty ;0 \right)$ và $\left( 1;+\infty\right)$.Chọn B.

Bài tập 16:Cho hàm số $y=\frac{3x-2}{{{\left( x-2 \right)}^{2}}}$. Hàm số đã cho:

A.Đồng biến trên các khoảng $\left( -\infty ;\frac{-2}{3} \right)$ và $\left( 2;+\infty\right)$ và nghịch biến trên khoảng $\left( \frac{-2}{3};2 \right)$.

B.Đồng biến trên khoảng $\left( \frac{-2}{3};2 \right)$ và nghịch biến trên các khoảng $\left( -\infty ;-\frac{2}{3} \right)$ và $\left( 2;+\infty\right)$.

C.Đồng biến trên khoảng $\left( -\infty ;-\frac{2}{3} \right)$ và nghịch biến trên khoảng $\left( 2;+\infty\right)$.

D.Đồng biến trên khoảng $\left( 2;+\infty\right)$ và nghịch biến trên khoảng $\left( -\infty ;\frac{-2}{3} \right)$.

Lời giải chi tiết

TXĐ: $D=\mathbb{R}\backslash \left\{ 2 \right\}$.

Ta có: ${y}"=\frac{3{{\left( x-2 \right)}^{2}}-2\left( x-2 \right)\left( 3x-2 \right)}{{{\left( x-2 \right)}^{4}}}=\frac{3\left( x-2 \right)-2\left( 3x-2 \right)}{{{\left( x-2 \right)}^{3}}}=\frac{-3x-2}{{{\left( x-2 \right)}^{3}}}$.

Lập bảng xét dấu ${y}"$:

*

Do đó hàm số đồng biến trên khoảng $\left( \frac{-2}{3};2 \right)$ và nghịch biến trên các khoảng $\left( -\infty ;-\frac{2}{3} \right)$ và $\left( 2;+\infty\right)$.

Chọn B.

Bài tập 17:Cho hàm số $y=x\sqrt{3-x}$ nghịch biến trên khoảng:

A.$\left( -\infty ;3 \right)$.B.$\left( -\infty ;2 \right)$.

C.$\left( 2;3 \right)$.D.$\left( 2;+\infty\right)$.

Lời giải chi tiết

TXĐ: $D=\left( -\infty ;3 \right>$.

Ta có: ${y}"=\sqrt{3-x}+x.\frac{-1}{2\sqrt{3-x}}=\frac{6-2x-x}{2\sqrt{3-x}}=\frac{6-3x}{2\sqrt{3-x}}=0\Leftrightarrow x=2$.