Tam giác đồng dạng

      380
Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1
*

*

Giả sử\(_{\Delta ABC\approx\Delta DEM}\)theo tỷ số k và có 2 đường cao, 2 cạnh tương ứng là h,a ; h",a"

Ta có:\(\frac{\Delta ABC}{\Delta DEM}=\frac{ah}{2}\div\frac{a"h"}{2}=\frac{ah}{a"h"}=\frac{a}{a"}.\frac{h}{h"}=k.k=k^2\)

=> ĐPCM


*

hình 49

Sabc=1/2ah.bc

Sa"b"c"=1/2a"h".b"c"

tính tỉ sô Sabc/Sa"b"c=ah.bc/a"h".b"c"

tam giác abc đồng dạng với tam giác a"b"c" theo tỉ số đồng dạng k suy ra bc/b"c"=ah/a"h"=k

suy ra Sabc/Sa"b"c"=bc/b"c" . ah/a"h"=k.k=k^2

suy ra đpcm


Giả sử tam giác ABCđồng dạng với tam giác A′B′C′theo tỷ số acó hai đường cao vàhai cạnh tương ứng là b,cvà b",c"

\(\Rightarrow\)\(\frac{b}{b"}=\frac{c}{c"}=a\)

Như vậy ta sẽ có\(\frac{S_{ABC}}{S_{A"B"C"}}\)\(=\frac{b.c}{b".c"}\)\(=\frac{b}{b"}.\frac{c}{c"}\)\(=a.a\)\(=a^2\)

Vậy tỉ số diện tíchcủa hai tam giác đồng dạngbằng bình phương tỉ số đồng dạng.

Bạn đang xem: Tam giác đồng dạng


Cho tam giác ABC đường cao AH, tam giác A"B"C" đường cao A"H". Biết tam giác A"B"C" đồng dạng với tam giác ABC thei tỉ số K. Chứng minh rằng tỉ số diện tích của hai tam giác bằng bình phương tỉ số đồng dạng.

Các bạn ơi giúp mình với ❤


Giả sử △ABC đồng dạng với △A′B′C′ thoeo tỷ số k có hai đường cao, hai cạnh tương ứng là h,avà h′;a′

Như vậy ta sẽ có: \(\dfrac{S_{ABC}}{S_{A"B"C"}}=\dfrac{ah}{a"h"}=\dfrac{a}{a"}\times\dfrac{h}{h"}=k.k=k^2\)

Nên ta có đpcm


1) Chứng minh tỉ số hai đường cao tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.

Xem thêm: Cách Nhập Dữ Liệu Trong Access Khác, Cách Để Sử Dụng Microsoft Access (Kèm Ảnh)

2) Chứng minh tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.

3) Chứng minh tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng thì bằng tỉ số đồng dạng.


3 A C B H Có tam giác ABC đồng dạng với tam giác A"B"C"(gt)

Nên \(\dfrac{A"B"}{AB}=\dfrac{A"C"}{AC}=\dfrac{B"C"}{BC}=k\)

Xét tam giác A"B"H" và tam giác ABH có:

góc A"H"B" = góc ABH (=90o)

góc A"B"H"= góc ABH (vì tam giác ABC đồng dạng với tam giác A"B"C")

Nên tam giác A"B"H" đồng dạng với tam giác ABH (g.g)

Do vậy \(\dfrac{A"H"}{AH}=\dfrac{A"B"}{AB}=k\)

2/

A B C M

Có tam giác ABC đồng dạng với tam giác A"B"C"(gt)

Nên \(\dfrac{A"B"}{AB}=\dfrac{A"C"}{AC}=\dfrac{B"C"}{BC}=k\) (1)

và \(\)góc B"A"M" = góc BAM \(\left(=\dfrac{1}{2}B"A"C"=\dfrac{1}{2}BAC\right)\) (2)

Xét tam giác A"B"M" và tam giác ABC có:

góc B"A"M" = góc BAM (từ 2)

góc A"B"M" = góc ABM (tam giác ABC đồng dạng với tam giác A"B"C")

Nên tam giác A"B"M" đồng dạng với tam giác ABM (g.g)

Do vậy \(\dfrac{A"M"}{AM}=\dfrac{A"B"}{AB}=k\) (từ 1)

3/

A B C M

Có tam giác ABC đồng dạng với tam giác A"B"C"(gt)

Nên \(\dfrac{A"B"}{AB}=\dfrac{B"C"}{BC}=\dfrac{\dfrac{B"C"}{2}}{\dfrac{BC}{2}}=\dfrac{B"M"}{BM}\) (1)